Math Majors of America Tournament for High Schools 2015 Tiebreaker Test

1. Each lattice point of the plane is labeled by a positive integer. Each of these numbers is the arithmetic mean of its four neighbors (above, below, left, right). Show that all the numbers are equal.
2. Determine, with proof, whether $22!6!+1$ is prime.
3. Is there a number s in the set $\{\pi, 2 \pi, 3 \pi, \ldots$,$\} such that the first three digits after the decimal point of s$ are .001? Fully justify your answer.
4. For any nonnegative integer r, let S_{r} be a function whose domain is the natural numbers that satisfies

$$
S_{r}\left(p^{\alpha}\right)= \begin{cases}0, & \text { if } p \leq r \\ p^{\alpha-1}(p-r), & \text { if } p>r\end{cases}
$$

for all primes p and positive integers α, and that $S_{r}(a b)=S_{r}(a) S_{r}(b)$ whenever a and b are relatively prime..
Now, suppose there are n squirrels at a party. Each squirrel is labeled with a unique number from the set $\{1,2, \ldots, n\}$. Two squirrels are friends with each other if and only if the difference between their labels is relatively prime to n. For example, if $n=10$, then the squirrels with labels 3 and 10 are friends with each other because $10-3=7$, and 7 is relatively prime to 10 .
Fix a positive integer m. Define a clique of size m to be any set of m squirrels at the party with the property that any two squirrels in the clique are friends with each other. Determine, with proof, a formula (using S_{r}) for the number of cliques of size m at the squirrel party.

