Math Majors of America Tournament for High Schools

 2018 Tiebreaker Test1. Daniel has an unlimited supply of tiles labeled " 2 " and " n " where n is an integer. Find (with proof) all the values of n that allow Daniel to fill an 8×10 grid with these tiles such that the sum of the values of the tiles in each row or column is divisible by 11 .
2. Prove that if a triangle has integer side lengths and the area (in square units) equals the perimeter (in units), then the perimeter is not a prime number.
3. Suppose n points are uniformly chosen at random on the circumference of the unit circle and that they are then connected with line segments to form an n-gon. What is the probability that the origin is contained in the interior of this n-gon? Give your answer in terms of n, and consider only $n \geq 3$.
4. A sequence of integers $\left\{s_{n}\right\}$ is defined as follows: fix integers a, b, c, and d, then set $s_{1}=a, s_{2}=b$, and $s_{n}=c s_{n-1}+d s_{n-2}$ for all $n \geq 3$. Create a second sequence $\left\{t_{n}\right\}$ by defining each t_{n} to be the remainder when s_{n} is divided by 2018 (so we always have $0 \leq t_{n} \leq 2017$). Let $N=\left(2018^{2}\right)$!. Prove that $t_{N}=t_{2 N}$ regardless of the choices of a, b, c, and d.
