1. A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?

## Answer: $8 \pi$

Solution: Since the circle is inscribed inside the square, the diameter $2 r$ of the circle is equal to the side length of the square. Thus we are given that $r^{3}=4(2 r)$, so $r^{2}=8$ and the area of the circle is $\pi r^{2}=8 \pi$.
2. If the coefficient of $z^{k} y^{k}$ is 252 in the expression $(z+y)^{2 k}$, find $k$.

Answer: 5
Solution: By the Binomial Theorem, we know that the coefficient of $z^{k} y^{k}$ is $\binom{2 k}{k}$. Therefore, we solve

$$
\binom{2 k}{k}=\frac{(2 k)!}{k!k!}=252
$$

Some simple checking gives $k=5$.
3. Let $f(x)=\frac{4 x^{4}-2 x^{3}-x^{2}-3 x-2}{x^{4}-x^{3}+x^{2}-x-1}$ be a function defined on the real numbers where the denominator is not zero. The graph of $f$ has a horizontal asymptote. Compute the sum of the $x$-coordinates of the points where the graph of $f$ intersects this horizontal asymptote. If the graph of $f$ does not intersect the asymptote, write 0 .

Answer: $\frac{5}{2}$
Solution: The asymptote is $y=4$. Compute $f(x)-4$, and then find the roots of the numerator. We have $\frac{(x-2)(x-1)(2 x+1)}{(x-1) x\left(x^{2}+1\right)-1}=0$, so $x=1,2,-\frac{1}{2}$, and the sum is $\frac{5}{2}$.
4. How many 5-digit numbers have strictly increasing digits? For example, 23789 has strictly increasing digits, but 23889 and 23869 do not.

## Answer: 126

Solution: For every choice of 5 distinct digits, we can construct exactly one such number. However, we cannot use the digit 0 because, for example, 02357 is not a 5 -digit number. We must choose 5 digits from 9 digits. The number of possible combinations is $\binom{9}{5}=\frac{9!}{5!4!}=126$.
5. Let

$$
y=\frac{1}{1+\frac{1}{9+\frac{1}{5+\frac{1}{9+\frac{1}{5+\cdots}}}}}
$$

If $y$ can be represented as $\frac{a \sqrt{b}+c}{d}$, where $b$ is not divisible by any squares, and the greatest common divisor of $a$ and $d$ is 1 , find the sum $a+b+c+d$.

Solution: First, we use the classic method of solving just $\frac{1}{9+\frac{1}{5+\frac{1}{2}}}$, by setting up the equation

$$
\begin{aligned}
& 9+\frac{1}{5+\frac{1}{9+\frac{1}{5+\cdots}}} \\
& \frac{1}{9+\frac{1}{5+x}}=x .
\end{aligned}
$$

Solving this gives us the fraction

$$
\frac{x+5}{9 x+46}=x \Rightarrow 9 x^{2}+46 x=x+5 .
$$

Solving this gives us that

$$
x=\frac{-45 \pm \sqrt{45^{2}+4 \cdot 9 \cdot 5}}{2 \cdot 9}=-\frac{5}{2} \pm \frac{7 \sqrt{5}}{6} .
$$

Since $x$ represents a nested fraction, it must be positive in value, so we know that

$$
x=-\frac{5}{2}+\frac{7 \sqrt{5}}{6} .
$$

Finally, plugging back into the original question, we see that

$$
y=\frac{1}{1+\left(-\frac{5}{2}+\frac{7 \sqrt{5}}{6}\right)}=\frac{21 \sqrt{5}+27}{82},
$$

so the answer is $21+5+27+82=136$.
6. "Counting" is defined as listing positive integers, each one greater than the previous, up to (and including) an integer $n$. In terms of $n$, write the number of ways to count to $n$.

Answer: $2^{n-1}$
Solution: Note that we need to have $n$ in our count. We have $n-1$ integers before that, and for each one we have two choices - write it down or skip it. So there are $2^{n-1}$ total ways.
. Mathathon Round 3 (4 points each)
7. Suppose $p, q, 2 p^{2}+q^{2}$, and $p^{2}+q^{2}$ are all prime numbers. Find the sum of all possible values of $p$.

## Answer: 2

Solution: Note that $\left(2 p^{2}+q^{2}\right)-\left(p^{2}+q^{2}\right)=p^{2} . p^{2}+q^{2}>1$, so the difference between two odd numbers is even. Therefore $p$ is an even prime, so $p=2$.
8. Let $r(d)$ be a function that reverses the digits of the 2 -digit integer $d$. What is the smallest 2 -digit positive integer $N$ such that for some 2-digit positive integer $n$ and 2-digit positive integer $r(n), N$ is divisible by $n$ and $r(n)$, but not by 11?

## Answer: 84

Solution: We want to minimize $\operatorname{lcm}(r(n), n)$, which is at least twice the smaller of the two. $n=24$ or 42 both work, and give 84 . If either digit $\geq 4$ then the number is $>84$, so we are done.
9. What is the period of the function $y=(\sin (3 \theta)+6)^{2}-10(\sin (3 \theta)+7)+13$ ?

Answer: $\frac{2 \pi}{3}$
Solution: $(\sin (3 \theta)+6)^{2}-10(\sin (3 \theta)+7)+13=\sin ^{2}(3 \theta)+12 \sin (3 \theta)+36-10 \sin (3 \theta)-70+13, y=\sin ^{2}(3 \theta)+2 \sin (3 \theta)+1-22$, $y=(\sin (3 \theta)+1)^{2}-22$. The function $\sin (3 \theta)$ repeats every $\frac{2 \pi}{3}$
10. Three numbers $a, b, c$ are given by $a=2^{2}\left(\sum_{i=0}^{2} 2^{i}\right), b=2^{4}\left(\sum_{i=0}^{4} 2^{i}\right)$, and $c=2^{6}\left(\sum_{i=0}^{6} 2^{i}\right)$. $u, v, w$ are the sum of the divisors of $a, b, c$ respectively, yet excluding the original number itself. What is the value of $a+b+c-u-v-w$

Answer: 0
Solution: It should be noted that $a, b, c$ are of the form $p\left(2^{n}\right)$ where $p$ is a prime and $n$ is an integer. The sum of the divisors is $\sum_{i=0}^{n} 2^{i}+p\left(\sum_{i=0}^{n-1} 2^{i}\right)$ when excluding the original number itself. Since $p=\sum_{i=0}^{n} 2^{i}$, the value becomes $p\left(2^{n}\right)$. Thus the sum of the divisors of the original number excluding the original number itself equals the original number and $a+b+c-u-v-w=0$.
11. Compute $\sqrt{6-\sqrt{11}}-\sqrt{6+\sqrt{11}}$.

Answer: $-\sqrt{2}$
Solution: Square the expression and simplify to get 2 . The expression is negative since the first term has $6-\sqrt{11}$ and the second term has $6+\sqrt{11}$, so we take the negative square root to get the answer $-\sqrt{2}$.
12. Let $a_{0}, a_{1}, \ldots a_{n}$ be such that $a_{n} \neq 0$ and

$$
\left(1+x+x^{3}\right)^{341}\left(1+2 x+x^{2}+2 x^{3}+2 x^{4}+x^{6}\right)^{342}=\sum_{i=0}^{n} a_{i} x^{i}
$$

Find the number of odd numbers in the sequence $a_{0}, a_{1}, \ldots a_{n}$.

## Answer: 3

Solution: The expression reduces to $\left(1+x+x^{3}\right)^{2^{10}}$. The number of odd coefficients doesn't change each time you square this, so there's still 3 after squaring 10 times.
. Mathathon Round 5 (7 points each)
13. How many ways can we form a group with an odd number of members (plural) from 99 people? Express your answer in the form $a^{b}+c$, where $a, b$, and $c$ are integers and $a$ is prime.

Answer: $2^{98}-99$
Solution: We want to find the sum

$$
\binom{99}{1}+\binom{99}{3}+\ldots+\binom{99}{99}
$$

Since we can put the number of subsets with an odd number of elements in 1-1 correspondence with the number of subsets with an even number of elements, for any set, this sum is equal to

$$
\frac{1}{2}\left(\binom{99}{0}+\binom{99}{1}+\ldots+\binom{99}{99}\right)=\frac{1}{2}\left(2^{99}\right)=2^{98}
$$

. If we require that every group has more than one member, then our answer is $2^{98}-\binom{99}{1}=2^{98}-99$.
14. A cube is inscibed in a right circular cone such that the ratio of the height of the cone to the radius is $2: 1$. Compute the fraction of the cone's volume that the cube occupies.

Answer: $\frac{12}{\pi}(\sqrt{2}-1)^{3}$
Solution: Let $h$ be the height of the pyramid, $r$ be the radius, and $s$ be the side length of the square. We see that $2 r=h$. We can solve for the desired ratio by considering similar triangles in the cross sectional plane. Then $\frac{2(h-s)}{s \sqrt{2}}=\frac{h}{r}=2$.
15. Let $F_{0}=1, F_{1}=1$ and $F_{k}=F_{k-1}+F_{k-2}$. Let $P(x)=\sum_{k=0}^{99} x^{F_{k}}$. The remainder when $P(x)$ is divided by $x^{3}-1$ can be expressed as $a x^{2}+b x+c$. Find $2 a+b$.

## Answer: 112

Solution: Counting the Fibonacci sequence mod 3 gives a period of $8: 1,1,2,0,2,2,1,0$ and repeats. We know $a$ counts the number of terms with powers $2(\bmod 3)$ in the first 100 terms, $b$ counts the number of terms $1(\bmod 3)$, and $c$ counts the number of terms $0(\bmod 3)$. We can compute using that periodic sequence that $(a, b, c)=(37,38,25)$.
. Mathathon Round 6 (8 points each)
16. If $|x|<\frac{1}{4}$ and

$$
X=\sum_{N=0}^{\infty} \sum_{n=0}^{N}\binom{N}{n} x^{2 n}(2 x)^{N-n},
$$

then write $X$ in terms of $x$ without any summation or product symbols (and without an infinite number of ' + 's, etc.).
Answer: $\frac{1}{1-2 x-x^{2}}$
Solution: The inner sum is the binomial expansion $\left(2 x+x^{2}\right)^{n}$. This is a geometric series with first term 1 and common ratio $2 x+x^{2}$. The result is as stated in the answer (noting that the bound on $x$ is more than sufficient).
17. Ankit finds a quite peculiar deck of cards in that each card has $n$ distinct symbols on it and any two cards chosen from the deck will have exactly one symbol in common. The cards are guaranteed to not have a certain symbol which is held in common with all the cards. Ankit decides to create a function $f(n)$ which describes the maximum possible number of cards in a set given the previous constraints. What is the value of $f(10)$ ?

## Answer: 91

Solution: One can start by looking at a particular card with 10 unique symbols on it. A "branch"' of nine cards can be created all having in common a particular symbol with the starting card. The branch cannot be any longer due to the fact that other cards on other branches would not be able to have a symbol in common with all the cards in this branch. Thus there can exist ten branches with nine cards in each branch along with the one starting card.The function $f(n)=n(n-1)+1$. Thus $f(10)=10(9)+1=91$.
18. Dietrich is playing a game where he is given three numbers $\mathrm{a}, \mathrm{b}$, c which range from $[0,3]$ in a continuous uniform distribution. Dietrich wins the game if the maximum distance between any two numbers is no more than 1 . What is the probability Dietrich wins the game?

## Answer: $\frac{7}{27}$

Solution: A three dimensional graph with coordinate axes $\mathrm{x}, \mathrm{y}$, and z could be used to represent combination of values of a, b , and c . The probability will be symmetric about plane $\mathrm{y}=\mathrm{x}$ so one can thus consider the probability when $y \geq x$. When $y \geq x,(y-1) \leq z \leq(x+1)$. For $1 \leq x \leq 2,(y-1) \leq z \leq(x+1)$ which produces a trapezoidal prism. For $2 \leq x \leq 3$, $(y-1) \leq z \leq 3$ which produces a triangular prism along with a pyramid. For $0 \leq x \leq 1,0 \leq z \leq(x+1)$ which produces a rectangular prism along with a pyramid. The sum of the volumes is: $\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+1+\frac{1}{3}=\frac{7}{2}$. The probability is $\frac{\frac{7}{27}}{\frac{27}{2}}=\frac{7}{27}$
. Mathathon Round 7 (9 points each)
19. Consider $f$ defined by

$$
f(x)=x^{6}+a_{1} x^{5}+a_{2} x^{4}+a_{3} x^{3}+a_{4} x^{2}+a_{5} x+a_{6} .
$$

How many tuples of positive integers $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ exist such that $f(-1)=12$ and $f(1)=30$ ?
Answer: 4788
Solution: $1-a_{1}+a_{2}-a_{3}+a_{4}-a_{5}+a_{6}=12=f(-1)$ and $1+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=30=f(1)$. Assume $a_{i}$ 's positive, so $2+2 a_{2}+2 a_{4}+2 a_{6}=42$, so $a_{2}+a_{4}+a_{6}=20$ and $a_{1}+a_{3}+a_{5}=9$. Then we have a balls and bins problem,
where there are $\binom{19}{2}\binom{8}{2}=4788$ total ways.
20. Let $a_{n}$ be the number of permutations of the numbers $S=\{1,2, \ldots, n\}$ such that for all $k$ with $1 \leq k \leq n$, the sum of $k$ and the number in the $k$ th position of the permutation is a power of 2 . Compute $a_{2^{0}}+a_{2^{1}}+a_{2^{2}} \cdots+a_{2^{20}}$.

## Answer: 21

Solution: We prove that $a_{n}=1$ for all $n$ by strong induction. Clearly $a_{1}=1$. Suppose that $a_{n}=1$ for all values less than $n$. Let $n=2^{m}+r$ for $0 \leq r<2^{m}$. Consider $S=\left\{2^{m}, 2^{m}+1, \ldots, 2^{m}+r\right\}$. For each $s$ in $S, \pi(s)+s$ has to be $2^{m+1}$, since every other power of 2 is either too high or too low. Therefore, there is a unique spot determined for everything, by employing the inductive hypothesis. Finally, we have exponents from 0 to 20, or 21 numbers.
21. A 4-dimensional hypercube of edge length 1 is constructed in 4 -space with its edges parallel to the coordinate axes and one vertex at the origin. Its coordinates are given by all possible permutations of $(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)$, and $(1,1,1,1)$. The 3 -dimensional hyperplane given by $x+y+z+w=2$ intersects the hypercube at 6 of its vertices. Compute the 3 -dimensional volume of the solid formed by the intersection.

## Answer: $\frac{4}{3}$

Solution: The hyperplane intersects the hypercube at the vertices given by all the permutations of $(1,1,0,0)$. We will show that the 3 -dimensional solid formed by the intersection is a regular octahedron. First, note that the center of the solid is the same as the center of the hypercube, namely $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. The distance from the center to each of the 6 vertices is the same. We can show that the four vertices $(1,1,0,0),(1,0,1,0),(0,0,1,1)$, and $(0,1,0,1)$ form a square, as well as the vertices $(1,1,0,0),(1,0,0,1),(0,0,1,1)$, and $(0,1,1,0)$ as well as the vertices $(1,0,0,1),(1,0,1,0),(0,1,1,0)$, and $(0,1,0,1)$. Note that each set of four vertices shares two elements with each other set. Thus the six points form the vertices of a regular octahedron, so the cross section described in the problem is a regular octahedron. The edge length of this octahedron is $\sqrt{1^{2}+1^{2}}=\sqrt{2}$. There are at least two ways to find the volume from this point on: 1. Use the volume formula for a regular octahedron: $\frac{\sqrt{2}}{3} s^{3}$, where $s$ is the side length. Then the volume of the octahedron is $\frac{\sqrt{2}}{3}(\sqrt{3})^{3}=\frac{4}{3}$. 2. A regular octahedron can be divided into eight pyramids by planes through the four squares formed by the vertices. Each of these pyramids has a volume of $\frac{1}{3}(1)\left(\frac{1}{2}\right)(1)(1)=\frac{1}{6}$. Then the octahedron's volume is $8\left(\frac{1}{6}\right)=\frac{4}{3}$.

