

Name: Team:

_	75	min	utes

simplify answers

Math Majors of America Tournament for High Schools

2018 Individual Test

- 1. Five friends arrive at a hotel which has three rooms. Rooms A and B hold two people each, and room C holds one person. How many different ways could the five friends lodge for the night?
- 2. The set of numbers $\{1, 3, 8, 12, x\}$ has the same average and median. What is the sum of all possible values of x? (Note that x is not necessarily greater than 12.)
- 3. How many four-digit numbers \overline{ABCD} are there such that the three-digit number \overline{BCD} satisfies $\overline{BCD} = \frac{1}{6}\overline{ABCD}$? (Note that A must be nonzero.)
- 4. Find the smallest positive integer n such that n leaves a remainder of 5 when divided by 14, n^2 leaves a remainder of 1 when divided by 12, and n^3 leaves a remainder of 7 when divided by 10.
- 5. In rectangle ABCD, let E lie on \overline{CD} , and let F be the intersection of \overline{AC} and \overline{BE} . If the area of $\triangle ABF$ is 45 and the area of $\triangle CEF$ is 20, find the area of the quadrilateral ADEF.
- 6. If x and y are integers and $14x^2y^3 38x^2 + 21y^3 = 2018$, what is the value of x^2y ?
- 7. A, B, C, D all lie on a circle with $\overline{AB} = \overline{BC} = \overline{CD}$. If the distance between any two of these points is a positive integer, what is the smallest possible perimeter of quadrilateral ABCD?
- 8. Compute

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m \cos^2(n) + n \sin^2(m)}{3^{m+n} (m+n)}.$$

- 9. Diane has a collection of weighted coins with different probabilities of landing on heads, and she flips nine coins sequentially according to a particular set of rules. She uses a coin that always lands on heads for her first and second flips, and she uses a coin that always lands on tails for her third flip. For each subsequent flip, she chooses a coin to flip as follows: if she has so far flipped a heads out of b total flips, then she uses a coin with an $\frac{a}{b}$ probability of landing on heads. What is the probability that after all nine flips, she has gotten six heads and three tails?
- 10. For any prime number p, let S_p be the sum of all the positive divisors of 37^pp^{37} (including 1 and 37^pp^{37}). Find the sum of all primes p such that S_p is divisible by p.
- 11. Six people are playing poker. At the beginning of the game, they have 1, 2, 3, 4, 5, and 6 dollars, respectively. At the end of the game, nobody has lost more than a dollar, and each player has a distinct nonnegative integer dollar amount. (The total amount of money in the game remains constant.) How many distinct finishing rankings (i.e. lists of first place through sixth place) are possible?
- 12. Let C_1 be a circle of radius 1, and let C_2 be a circle of radius $\frac{1}{2}$ internally tangent to C_1 . Let $\{\omega_0, \omega_1, \dots\}$ be an infinite sequence of circles, such that ω_0 has radius $\frac{1}{2}$ and each ω_k is internally tangent to C_1 and externally tangent to both C_2 and ω_{k+1} . (The ω_k 's are mutually distinct.) What is the radius of ω_{100} ?

no calculators