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February 1, 2020

Problem 1. If 3a + 1 = b and 3b + 1 = 2020, what is a?

Solution. We see that 3b + 1 = 2020 =⇒ 3b = 2019, so b = 673; then 3a + 1 = 673 =⇒ 3a = 672, so
a = 224 .

Problem 2. Tracy draws two triangles: one with vertices at (0, 0), (2, 0), and (1, 8) and another with
vertices at (1, 0), (3, 0), and (2, 8). What is the area of overlap of the two triangles?

Solution. Observe that when we draw a diagram, the area of overlap is a triangle, as shown below:

Two of the vertices of the area of overlap will be (1, 0) and (2, 0). The third, X, can be found by intersecting
the lines connecting (1, 8) and (2, 0), and (1, 0) and (2, 8); by symmetry this works out to be (1.5, 4).

Then the triangle has base 1 and height 4, so its area is 2 .

Problem 3. If p, q, and r are prime numbers such that p+ q+ r = 50, what is the maximum possible value
of pqr?

Solution. Note firstly that all primes except for 2 are odd, so therefore if none of p, q, and r equals 2, then
p+ q+ r will be odd. This establishes that at least one of p, q, r must be 2; without loss of generality assume
that r = 2.

Then p + q = 48 and p and q are prime numbers, and we wish to maximize their product. By intuition
(or by the AM-GM inequality), we see that we seek to push p and q as close together. Therefore we begin
trying pairs of odd numbers: (23, 25) and (21, 27) clearly do not work, but (19, 29) are indeed prime numbers
that sum to 48.

Our final answer is 2 · 19 · 29 = 1102 .

Problem 4. Points A,B,C,D lie on a circle of radius 4 such that BC = 8, BD = 4, and m∠ABC = 27◦.
If segments AB and CD do not intersect, what is the value of m∠ACD? (Give your answer in degrees.)

Solution. We begin by drawing a diagram:
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Given that BC = 8 and that the circle has radius 4, it follows that BC is a diameter. Consequently, we see
that ∠BDC = 90◦, and as BD = 4 and BC = 8, 4BCD is a 30− 60− 90 triangle with ∠BCD = 30◦.

Next, we again use that BC is a diameter to conclude that ∠BCA = 63◦, as a result of right triangle

ABC. It follows that ∠ACD = ∠BCD + ∠BCA = 30◦ + 63◦ = 93◦ .

Problem 5. Express
√

14−
√

52−
√

14 +
√

52 as a rational number.

Solution. Suppose that a =
√

14−
√

52 −
√

14 +
√

52. To get rid of the annoying nested square roots, we
square both sides of the equation, yielding

a2 = (14−
√

52)− 2

(√
14−

√
52

)(√
14 +

√
52

)
+ (14 +

√
52).

The
√

52s cancel in the outer terms of the expansion, thankfully, so we need to deal with the term in the
middle. We see that(√

14−
√

52

)(√
14 +

√
52

)
=

√
(14−

√
52)(14 +

√
52) =

√
144 = 12.

This makes our equation for a2 much easier to deal with: plugging in everything and reducing, we get

a2 = 28− 2(12) = 4.

Now note that
√

14−
√

52 <
√

14 +
√

52, so a is negative. It follows that a = −2 .

Problem 6. Let a0 = 1, and let an = 1 + 1
an−1

for every integer n ≥ 1. Find the value of the product
a1a2 · · · a9.

Solution. We begin by computing the first few terms of the sequence. Observe that a1 = 1 + 1
1 = 2;

a2 = 1 + 1
2 = 3

2 ; a3 = 1 + 2
3 = 5

3 ; a4 = 1 + 3
5 = 8

5 . This looks promising: after all,

a1a2a3a4 = 2 · 3

2
· 5

3
· 8

5
= 8,

as all the numerators nicely cancel with the denominators.
Additionally, one may observe that all the terms seem to be successive ratios of Fibonacci numbers. At

this point, it is possible to proceed by extrapolating the rest of the ai and assuming they follow this pattern
(which will result in the correct answer), but we will provide a rigorous proof.

Let F0 = 1, F1 = 1, Fn = Fn−1 +Fn−2 for n ≥ 2 be the Fibonacci Sequence. We will show that ai = Fi+1

Fi

for all i.
We proceed by induction. For our base case, observe that a0 = 1 and F1

F0
= 1

1 = 1. As for our inductive

step: suppose that for some k, ak = Fk+1

Fk
. We will show that ak+1 = Fk+2

Fk+1
.

We have ak+1 = 1 + 1
ak

, so ak+1 = 1 + Fk

Fk+1
= Fk+1+Fk

Fk+1
. But Fk + Fk+1 = Fk+2, so ak+1 = Fk+2

Fk+1
, as

desired.
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Therefore our product comes out as follows:

a1a2a3 . . . a9 =
F2

F1
· F3

F2
· F4

F3
· . . . · F10

F9
,

which nicely reduces to F10

F1
. We may compute manually that F10 = 89, and as F1 = 1 our answer is 89 .

Problem 7. Miki wants to distribute 75 identical candies to the students in her class such that each student
gets at least 1 candy. For what number of students does Miki have the greatest number of possible ways to
distribute the candies?

Solution. Suppose that we have the most number of ways to distribute the candies for n students.
Then we start by giving each student a candy, so we have 75 − n candies left. The remaining problem

is equivalent to the question of arranging n− 1 dividers and 75− n candies in a row; the first student gets
however many candies there are before the first divider (which may or may not be zero), the second student
gets however many candies there are after the first divider and before the second; so on and so forth.

Therefore there are (n − 1) + (75 − n) items in total, which makes 74 items. The number of ways to

arrange them is
(

74
n−1
)
, which is clearly maximized when n = 38 .

For more information on this method of solving combinatorics problems, we recommend searching stars
and bars online.

Problem 8. Let ABCD be a rectangle. Let points E, F , G, and H lie on the segments AB, AD, BC, and
CD (respectively) such that both EF and GH are parallel to BD. If 4AFE is congruent to 4BEG and
AE
HC = 1

2 , what is AB
BC ?

Solution. Once again, we begin by drawing an accurate diagram:

Since we’re only looking for ratios, without loss of generality assume that AE = 1 and HC = 2. Let the
length of segment AF be x.

It follows that EB = x and BG = 1 by the assumption that 4AFE and 4BEG are congruent. Further
note that ∠AFE = ∠ADB = ∠DBC = ∠CGH, as lines EF,BD, and GH are parallel and as ABCD is
a rectangle. It follows that ∠GCH = ∠FAE = 90◦ and ∠AFE = ∠CGH, so triangle HCG and EAF are
similar with scale factor 2, as HC = 2 ·AE.

From this triangle similarity we see that GC = 2x, as AF = x. Observe that as 4BCD and 4FAE are
similar, DC

CB = AE
AF . But DC = AB = AE + EB = 1 + x, BC = BG + GC = 1 + 2x, AE = 1, and AF = x,

so
1 + x

1 + 2x
=

1

x
.

Cross-multiplication yields 1 + 2x = x+x2, or equivalently, x2−x+ 1 = 0. The quadratic formula yields

the solution x = 1+
√
5

2 .

Finally, we know that AB
BC = 1

x , so our answer is 2
1+
√
5

= 2(1−
√
5)

(1+
√
5)(1−

√
5)

=

√
5− 1

2
.
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Problem 9. If a1, a2, a3, . . . is a geometric sequence satisfying

19a2019 + 19a2021
a2020

= 25 +
6a2006 + 6a2010

a2008

and 0 < a1 < a2, what is the value of a2

a1
?

Solution. Let k be the common ratio of the geometric sequence. We know that ai = a1k
i−1 for all i, and

making these substitutions into the equation yields

19a1k
2018 + 19a1k

2020

a1k2019
= 25 +

6a1k
2005 + 6a1k

2009

a1k2007
.

This allows us to do many cancellations. Firstly, all the a1 terms drop out, and secondly, most of the
k-powers drop out, too. The equation becomes

19

(
1

k
+ k

)
= 25 + 6

(
1

k2
+ k2

)
.

We make a substitution, as this is still hard to deal with: motivated by the fact that (k+ 1
k )2 = k2+ 1

k2 +2,
we let k + 1

k = x. Our equation becomes

19x = 25 + 6(x2 − 2).

This is much easier to deal with. The quadratic becomes 6x2 − 19x + 13 = 0, and it becomes obvious
that one of the roots is 1. If x = 1, then k + 1

k = 1 and k < 1, which contradicts 0 < a1 < a2 as a2 = a1k.
Therefore we find the other root, which is x = 13

6 .
Now we see that k+ 1

k = 13
6 , which yields roots k = 2

3 and k = 3
2 . Again, if k = 2

3 , then a1 > a2; therefore

k = 3
2 . But we observe that a2

a1
= k, so our answer is

3

2
.

Problem 10. Elizabeth has an infinite grid of squares. (Each square is next to the four squares directly
above it, below it, to its left, and to its right.) She colors in some of the squares such that the following two
conditions are met: (1) no two colored squares are next to each other; (2) each uncolored square is next to
exactly one colored square. In a 20× 20 subgrid of this infinite grid, how many colored squares are there?

Solution. In problems like these, it’s always a good idea to start with small cases. Here’s a diagram where
we’ve colored in exactly one square — the bottom left one:

Observe that after coloring that square, all the squares marked with Xs become off limits. For the two
squares directly next to the blue square, it’s obvious that they can’t be colored because of condition (1). As
for the three other squares, if any of them are colored, then there exist uncolored squares directly next to
two colored squares, contradicting condition (2).
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Now, we see that to address condition (2) for the X-marked square two to the right and two up, we need
a colored square directly above or to the right of it. Assume we choose above, without loss of generality.
Our diagram looks like this:

Observe that to satisfy condition (2) for the X-marked square three to the right and two up from the
bottom corner, we actually need a blue square to the right of it. We can fill in the rest of this five-by-five
subgrid in a similar manner, and in the end it looks like this:

Observe that when we color in the grid this way, with our original blue square in the bottom left, that its
closest neighbors on the same row or column must be at least five spaces away. Indeed, given the arguments
we’ve made so far, it is impossible for any of the other squares in the bottom row or leftmost column to be
shaded.

Moreover, the squares exactly five away from that blue square, left or up, must be shaded; otherwise the
bottom-right corner and top-left corner squares will not have a colored neighbor.

Now the key observation is that we can just stack these five-by-five subgrids on top of one another to
complete a 20-by-20 grid, and that to get a 20-by-20 grid, we need 16 subgrids total. Therefore the total
number of colored squares is 5 · 16 = 80 .

Problem 11. Find the smallest whole number N ≥ 2020 such that N has twice as many even divisors as
odd divisors and N2 has a remainder of 1 when it is divided by 15.

Solution. Firstly, we claim that N has twice as many even divisors as odd divisors if N = 4k for some odd
number k. This is true because if a is an odd divisor of 4k, then 2a and 4a must also be divisors of 4k; it
follows that for each odd divisor there must be two even divisors.

Next, N2 = (4k)2 = 16k2. But 16k2 ≡ k2 (mod 15), so we need k2 ≡ 1 (mod 15), which for odd k occurs
only when k ≡ 1 (mod 15) or k ≡ 11 (mod 15).
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If k ≡ 1 (mod 15) and k ≡ 0 (mod 4), then k ≡ 16 (mod 60); otherwise, if k ≡ 11 (mod 15) and k ≡ 0
(mod 4), k ≡ 56 (mod 60).

The greatest multiple of 60 less than 2020 is 1980. Therefore we first check 1980 + 56 = 2036. We know
already that it satisfies the condition that 20362 ≡ 1 (mod 15); we just need to check that 2036 has twice

as many even divisors as odd ones. Indeed, 2036 = 4 · 509, and 509 is odd, so our answer is 2036 .

Problem 12. We say that the sets A, B, and C form a “sunflower” if A ∩ B = A ∩ C = B ∩ C. (A ∩ B
denotes the intersection of the sets A and B.) If A, B, and C are independently randomly chosen 4-element
subsets of the set {1, 2, 3, 4, 5, 6}, what is the probability that A, B, and C form a sunflower?

Solution. Firstly, the total number of ways to choose three 4-element subsets is
(
6
4

)3
= 153.

Next, we check cases on how large the common intersection A∩B ∩C must be. If |A∩B ∩C| = 1, then
there are five elements left over, and none can be shared between any two of A,B, and C; this clearly does
not work. Next, if |A∩B ∩C| = 2, then we run into the same problem: there are two elements left in A,B,
and C each, but there are four elements left of {1, 2, 3, 4, 5, 6}.

Therefore assume firstly that |A∩B∩C| = 3. There are
(
6
3

)
= 20 ways to choose this common intersection,

and then each of the three remaining elements must be assigned to one of A,B, or C. This yields 6 · 20 total
arrangements that form a sunflower.

There is one more case: where all the sets are the same. This yields
(
6
4

)
= 15 more arrangements that

form a sunflower.

Our final answer is thus 15+120
153 = 9

152 =
1

25
.
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